研究チーム 研究成果 ニュース イベント

The 2nd Symposium on Nitrogen Circulation UTokyo,November 21, 2022

deNOxからreNOxへ 燃焼排ガス中のNOxを利用した アンモニア生成触媒プロセス開拓 from deNOx to reNOx NH₃ generation by use of NO in combustion exhaust

小倉 賢/MASARU OGURA

生産技術研究所/INSTITUTE OF INDUSTRIAL SCIENCE

東京大学/THE UNIVERSITY OF TOKYO

12050年までに、地球環境再生に同けた特徴可能な資源機構を多 産業活動由来の希薄な窒素化合物の循環技術創出ープラネタリーパウンダリー

content

- I. from deNOx to reNOx
- II. take-home message

consumption-oriented to recycling-oriented society

outline~What is reNOx?

deNOx: <u>the catalytic processes for the removal of nitrogen oxides</u>, have been studied, typically emitted from automobiles. As a "**reactive nitrogen compound**(反応性窒素化合物)", NOx, ammonia, and urea are involved in the deNOx catalytic system.

This approach to environmental issues has led us to turn in the direction of synthesizing ammonia from NOx in an energy-saving manner. ...reNOx

Catalytic and scientific approaches to the recycling-oriented society in the future, is introduced, including our preliminary, latest results as well as our motivation.

国内における反応性窒素の主な発生/排出源(単位: 千トン-N/年)

DISTRIBUTE OF TAXABLE PROPERTY.

our energy enjoyment society
based on oxidizing/consuming reactions
酸化・消費型社会である現代
$$X + O_2 \rightarrow XO_2 \quad \Delta_r H < 0$$

 $CO_2 \qquad => Energy$
 NO_x
=> Environmental issues
CO₂ and environmental problems are produced simultaneously with energy.

=Ex

5

shift to a society based on reducing/producing reactions 還元・生産型社会へ $XO_2 + R \rightarrow X(or X') + RO_2$ = Energy $\Delta_r H < 0$ H_{2} C = Reductant NH₃

CO₂ and NOx are used to regenerate energy (re)sources. =>reNOx

from deNOx to reNOx production of valuable N compounds by energy-less catalytic process

representative "catalysis" so far

deNOx for environmental issue

direct decomposition $\rightarrow N_2 + O_2$ the most ideal and difficult reduction

 $+HC \rightarrow N_{2} + CO_{2} + H_{2}O$ $+CO \rightarrow N_{2} + CO_{2}$

 $+NH_3 \rightarrow N_2 + H_2O$

 $N_2 + H_2 \rightarrow NH_3$

the current technology in gasoline-engine deNOx less selective in O_2

the current technology in stationary and heavy duty deNOx urea needed from external

production of NH₃ for food problem

the Haber-Bosch process under high T and P conditions

NOx as the source of NH₃

our target of NTA (NOx-to-Ammonia) reNOx

2 step NTA team

Our strategy: Placing an adsorbent capable of separating and recovering NO even under oxygen-rich conditions to recover only NO. The concentrated NO is fed to the NTA catalyst in the subsequent step, where it reacts with a reductant to produce NH_3 .

summary of the result by the 2 step NTA

take-home message

- from the society dependent on internal combustion: oxidizing and consuming
- to a society with recycling-oriented materials/resource: reducing and producing 酸化消費型の社会から, 還元生産型の社会へ
- our approach "reNOx", producing NH₃ not from N₂ but NOx, resulting in a deNOx method in a style of "local production for local consumption" N₂から生産しているNH₃をNOxから生産するreNOxに挑戦 ="地産地消型"のdeNOx